Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil.

نویسندگان

  • Justin P Kinney
  • Josef Spacek
  • Thomas M Bartol
  • Chandrajit L Bajaj
  • Kristen M Harris
  • Terrence J Sejnowski
چکیده

Although the extracellular space in the neuropil of the brain is an important channel for volume communication between cells and has other important functions, its morphology on the micron scale has not been analyzed quantitatively owing to experimental limitations. We used manual and computational techniques to reconstruct the 3D geometry of 180 μm(3) of rat CA1 hippocampal neuropil from serial electron microscopy and corrected for tissue shrinkage to reflect the in vivo state. The reconstruction revealed an interconnected network of 40-80 nm diameter tunnels, formed at the junction of three or more cellular processes, spanned by sheets between pairs of cell surfaces with 10-40 nm width. The tunnels tended to occur around synapses and axons, and the sheets were enriched around astrocytes. Monte Carlo simulations of diffusion within the reconstructed neuropil demonstrate that the rate of diffusion of neurotransmitter and other small molecules was slower in sheets than in tunnels. Thus, the non-uniformity found in the extracellular space may have specialized functions for signaling (sheets) and volume transmission (tunnels).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Glutamate Transporters on Spillover in a Monte Carlo Model of Hippocampal Neuropil

The goal of this study was to explore the effect of glutamate transporter density on spillover activation of AMPA and NMDA receptors at neighboring synapses by diffusion of glutamate in extracellular space following fast excitatory synaptic release at an active synapse. We used MCell, a Monte Carlo simulator of molecular signaling, to study the release of glutamate and diffusion in 3-D geometri...

متن کامل

Berberine attenuates convulsing behavior and extracellular glutamate and aspartate changes in 4-aminopyridine treated rats

Objective(s): K+ channel blocker 4-aminopyridine (4-AP) stimulates the release of glutamate from nerve terminals and induces seizures. Berberine as a potential herbal drug exerts several pharmacological actions on the central nervous system including anxiolytic, anticonvulsant, and neuroprotective properties. The present study aimed to investigate the effect of berberine on seizure onset and ti...

متن کامل

Glutamate transporter control of ambient glutamate levels

Accurate knowledge of the ambient extracellular glutamate concentration in brain is required for understanding its potential impacts on tonic and phasic receptor signaling. Estimates of ambient glutamate based on microdialysis measurements are generally in the range of ∼2-10μM, approximately 100-fold higher than estimates based on electrophysiological measurements of tonic NMDA receptor activit...

متن کامل

Distribution of Extracellular Glutamate in the Neuropil of Hippocampus

Reported values of extracellular glutamate concentrations in the resting state depend on the method of measurement and vary ∼1000-fold. As glutamate levels in the micromolar range can cause receptor desensitization and excitotoxicity, and thus affect neuronal excitability, an accurate determination of ambient glutamate is important. Part of the variability of previous measurements may have resu...

متن کامل

Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow.

The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 521 2  شماره 

صفحات  -

تاریخ انتشار 2013